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Example: Thorne (2005)

Thorne and Kamps (2008) used an ABAB design to evaluate the effects 

of a group contingency intervention on academic engagement and levels 

of problem behaviors among twelve students at risk for developing 

behavioral disorders. Frequency of inappropriate behavior was recorded 

via direct observation of each student during 15-minute academic periods.

We fit the gradual effects model for each of the twelve cases in the study. 

• quasi-Poisson variance function because outcome is a frequency 

count.

• log link, so that the effect size estimates are log-response ratios

• effect sizes estimated for m = 10 intervention sessions.

• For comparison purposes, also estimated log response ratios using R1

estimator (Pustejovsky, 2015), which assumes an immediate change-

in-levels.

• Average LRR effect size estimated using a random effects meta-

analysis model with robust variance estimation (Sidik & Jonkman, 

2006) 

Figure 2. Rates of inappropriate behavior from Thorne and Kamps 

(2008), including fitted values from the gradual effects model. 

Table 1. Estimates and standard errors for problem behavior from Thorne 

(2005) from the normally-distributed errors models.
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The gradual effects model

The gradual effects model applies to the data series for a single case, 

which might be one of several within a treatment reversal or multiple 

baseline design. Notation: 

• Yj denotes the observed outcome at measurement occasion j = 1,…, J.

• Tj is an indicator for treatment status at time j, where Tj = 0 when 

treatment does not occur during time j and Tj = 1 if treatment occurs 

during time j. 

• μj = E(Yj) denotes the mean outcome at time j. 

• ηj is the linear predictor at time j, defined by the link function g(x), 

where g(μj) = ηj.

• V(μj) is a variance function describing the relationship between the 

mean and the variance of the outcome.

The gradual effects model is then given by:
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• ω ϵ [0,1) represents the delay of the effect of treatment.

• When ω = 0, the effect of treatment is immediate.

• For larger ω, the full effect of treatment is increasingly delayed.

• m is a user-specified parameter describing the number of consecutive 

treatment sessions at which to estimate an effect size.

• σ2 represents dispersion of the outcome relative to the Poisson 

distribution.

Effect sizes

The choice of link function determines the form of the effect size 

estimated by the gradual effects model.

• With an identity link g(x) = x, 𝛽1 is an additive effect (unstandardized 

mean difference) of m consecutive treatment sessions.

• With a natural log link g(x) = ln(x), 𝛽1 is a log response ratio and 

exp 𝛽1 is the multiplicative effect of m consecutive treatment 

sessions.

• With a logit link g(x) = ln(x) - ln(1 - x), 𝛽1 is a log odds ratio

corresponding to m consecutive treatment sessions.

Estimation and software

• We estimate the gradual effects model using maximum quasi-

likelihood, with profiling in the non-linear parameter ω.

• Implemented in R package SingleCaseES

(https://github.com/jepusto/SingleCaseES).

• Also available as an interactive web application (written in Shiny) at 

https://jepusto.shinyapps.io/gem-scd/.  

Figure 1. Functional specification of the gradual effects model for differing 

values of ω, where 𝛽0 = 0, the equilibrium treatment effect is 𝛽1 = 1, and m = 

∞. Each plot depicts an ABAB design with ten sessions per phase.

Table 2. Simulation Conditions

Simulation study

We evaluated parameter recovery in the gradual effects model under 

conditions similar those seen in applied studies, focusing primarily on 

accuracy and bias of effect size estimates from GEM. Data were simulated 

following an ABAB design, using poisson-distributed outcomes and a log-

link. We examined both independent outcomes and AR(1) auto-correlated 

outcomes, generated using binomial thinning (McKenzie, 1988). 

• For designs with adequate phase lengths (n ≥ 5) and baseline frequencies 

that are not very close to zero, effect size estimates are close to unbiased 

even when outcomes are auto-correlated.

• Effect size estimates are typically more accurate than change-in-levels 

model, except when treatment effect is very close to zero.

• When outcomes are independent, the variance estimator performs poorly 

when treatment effects are close to zero.

• Variance is systematically under-estimated when outcomes are auto-

correlated.

• For meta-analysis, robust variance estimation is recommended to account 

for inaccurate variance estimates.  

Figure 3. Root mean square error of the effect size estimate for the gradual 

effects model and the change-in-levels model when outcomes are independent.

Figure 4. Relative bias of the treatment effect variance estimates from the 

gradual effects model when the outcomes are independent (left panel) or auto-

correlated at φ = 0.4 (right panel).

Paper and materials 
available at: 

https://osf.io/gaxrv/

Introduction
Single-case designs play an important role in certain disciplines within 

education research—particularly as a tool for developing and evaluating 

treatment practices for individuals with low-incidence disabilities. There 

has been growing interest in using meta-analysis to synthesize evidence 

from single-case designs. However, single-case data have a number of 

features that present challenges for statistical modeling and effect size 

estimation. Recent critical reviews have identified several criteria that 

effect size indices should ideally meet in order to be useful for meta-

analysis of single-case research:

• account for the presence of time trends (Wolery, Busick, Reichow, & 

Barton, 2010);

• use all available data, rather than selected subsets of data (Horner, 

Swaminathan, Sugai, & Smolkowski, 2012; Wolery et al., 2010);

• make appropriate assumptions about distribution of dependent variable 

(Shadish, 2014);

• account for the possibility of serial dependence among the outcome 

measurements (Horner et al., 2012; Shadish, 2014; Wolery et al., 

2010).

In this work, we address several of these criteria by developing a model 

for single-case data that exhibit non-linear time trends created by an 

intervention that produces gradual effects, which build up and dissipate 

over time. The model expresses a structural relationship between a pattern 

of treatment assignment and an outcome variable, making it appropriate 

for both treatment reversal and multiple baseline designs. It is formulated 

as a generalized linear model so that it can be applied to outcomes 

measured as frequency counts or proportions, both of which are 

commonly used in single-case research, while providing readily 

interpretable effect size estimates such as log response ratios or log odds 

ratios. 

Case

Change-in-levels 
model

LRR est. SE

Gradual effects 
model 

LRR est. SE ω σ2

Participant 1 -1.22 0.25 -1.91 0.21 0.62 1.47

Participant 2 -1.91 0.24 -2.25 0.22 0.45 1.36

Participant 3 -0.65 0.14 -0.74 0.15 0.35 0.87

Participant 4 -1.17 0.18 -1.38 0.18 0.44 2.18

Participant 5 -1.13 0.20 -1.54 0.25 0.64 1.96

Participant 6 -0.94 0.13 -1.21 0.11 0.49 0.23

Participant 7 -0.63 0.15 -0.70 0.16 0.35 0.66

Participant 8 -0.94 0.21 -1.19 0.24 0.53 0.95

Participant 9 -0.60 .014 -0.77 0.18 0.55 0.70

Participant 10 -0.94 0.13 -1.31 0.13 0.63 0.53

Participant 11 -0.75 0.12 -0.85 0.18 0.35 0.99

Participant 12 -1.50 0.27 -2.38 0.23 0.66 0.66

Random effects 
meta-analysis

-0.99 0.10 -1.34 0.16

Parameter Levels

Baseline frequency exp(β0) 5, 15, 25

Treatment effect β1 -1.6 [0.4] 1.6

Delay parameter ω 0.0, 0.3, 0.6, 0.9

Auto-correlation φ 0.0, 0.2, 0.4

Observations per phase 3,5,10
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